1、5G時代高功率、高集成、高熱量趨勢明顯,熱管理成為智能手機“硬需求”
2020年,5G技術邁向全面普及,消費電子產品向高功率、高集成、輕薄化和智能化方向加速發展。由于集成度、功率密度和組裝密度等指標持續上升,5G時代電子器件在性能不斷提升的同時,工作功耗和發熱量急遽升高。據統計,電子器件因熱集中引起的材料失效占總失效率的65-80%。為避免過熱帶來的器件失效,導熱硅脂、導熱凝膠、石墨導熱片、熱管和均熱板(VC)等技術相繼出現、持續演進,散熱管理已經成為5G時代電子器件的“硬需求”。


根據EUCNC數據,LTE智能手機功耗主要來源于功率放大器、應用處理器、屏幕和背光、信號收發器和基帶處理器。隨著消費電子產品向高集成、輕薄化和智能化方向發展,芯片和元器件體積不斷縮小,功率密度卻在快速增加,智能手機的散熱需求成為亟需解決的問題:
(1)芯片性能更高,四核、八核成為主流;
(2)柔性顯示、全面屏逐漸普及,2K/4K屏占領高端市場;
(3)內置更多無線功能,例如NFC、GPS、藍牙和無線充電;
(4)機身越來越薄,封裝密度越來越高。

隨著5G技術逐漸走向成熟,智能手機對散熱管理的需求再次大幅提升,主要表現為以下幾方面:
(1)5G手機射頻前端支持的頻段數量大幅增加,需采用Massive MIMO技術以增強信號接收能力,天線數量和射頻器件數量遠超4G手機;
(2)5G手機芯片處理能力有望達到4G手機的5倍以上,手機發熱密度絕對值將是4G手機的2倍以上;
(3)5G信號穿透能力變弱,手機機身材質逐漸向陶瓷和聚合物轉變,加之5G手機越來越緊湊,導致散熱能力越來越弱。


此外,5G手機普遍采用基帶外掛的方案,相關電路和電源芯片也要增加,手機內部功耗相應增加;由于5G覆蓋范圍不足,導致手機頻繁啟動5G信號搜索功能,發熱量也會變大。試驗證明,溫度每升高2℃,電子元器件可靠性將下降10%,其在50℃環境下的壽命只有25℃的 1/6。由此可見,散熱器件是5G手機中不能省掉、必不可少的環節。
一般而言,電子器件散熱有主動散熱(降低手機自發熱量)和被動散熱(加快熱量向外散出)兩種路線。其中,主動散熱主要利用與發熱體無關的動力元件強制散熱,一般應用于高功率密度且體積相對較大的電子設備,如臺式機和筆記本中配備的風扇、數據中心服務器的液冷散熱;被動散熱則主要通過導熱材料和導熱器件將元器件產生的熱量釋放到環境中,是一種沒有動力元件參與的散熱方式,廣泛應用于手機、平板、智能手表、戶外基站等。


目前,電子器件使用的散熱技術主要包括石墨散熱、金屬背板、邊框散熱、導熱凝膠散熱等導熱材料,以及熱管、VC等導熱器件。其中,導熱凝膠、導熱硅脂、石墨片和金屬片主要在中小型電子產品使用,熱管和VC則主要用在筆記本、電腦、服務器等中大型電子設備中使用。

導熱系數和厚度是評估散熱材料的核心指標。傳統手機散熱材料以石墨片和導熱凝膠等熱界面材料(TIM)為主,但是石墨片存在導熱系數相對較低,TIM材料則存在厚度相對較大等問題。在手機廠商的推動下,石墨烯材料持續取得突破,開始切入到消費電子散熱應用;熱管和VC厚度不斷降低,開始從電腦、服務器等領域滲透到智能手機領域。

熱管和均熱板利用熱傳導與致冷介質的快速熱傳遞性質,導熱系數較金屬和石墨材料有10倍以上提升,作為新興的散熱技術方案,近年來在智能手機領域開始獲得廣泛應用。其中,熱管的導熱系數范圍為10000~100000 W/mK,是純銅膜的20倍,是多層石墨膜10倍;均熱板作為熱管技術的升級,進一步實現了導熱系數的提升。

熱管一般由管殼、吸液芯和端蓋構成,將管內抽成1.3×(10-1~10-2)Pa的壓強后充以適量的工作液體,使緊貼管內壁的吸液芯毛細多孔材料中充滿液體后加以密封。管的一端為蒸發段(加熱段),另一端為冷凝段(冷卻段),根據應用需要在兩段中間可布置絕熱段。吸液芯采用毛細微孔材料,利用毛細吸力(由液體表面張力產生)回流液體,管內液體在吸熱段吸熱蒸發,冷卻段冷凝回流,循環帶走熱量。

從熱傳遞的三種方式來看(輻射、對流、傳導),對流傳導效率最高,因此熱管技術一經誕生就迅速普及開來。1963年,美國洛斯阿拉莫斯國家實驗室發明熱管技術。此后,熱管技術迅速應用于宇航、軍工等行業。隨著消費電子產業的發展,熱管技術逐漸應用于桌面電腦、筆記本、LED、平板電腦和手機中。


均熱板工作原理與熱管類似,同樣包括傳導、蒸發、對流、冷凝四個主要步驟。兩者差別主要在于熱傳導方式不同。熱管的熱傳導方式是一維的,是線的熱傳導方式,而均熱板的熱傳導方式是二維的,是面的熱傳導方式。相對于熱管,首先均熱板與熱源以及散熱介質的接觸面積更大,能夠使表面溫度更加均勻;其次使用均熱板可以使熱源和設備直接接觸降低熱阻,而熱管則在熱源和熱管間需要嵌入基板;最后均熱板更加輕薄,更能夠適應手機集成化、輕量化的趨勢。相關研究表明,VC散熱器的性能比熱管提高20%~30%。


隨著5G手機功耗持續升高,對整機散熱能力的要求不斷提升,均熱板/超薄均熱板的應用開始激增。4G時代高端手機普遍采用熱管技術來實現快速散熱。進入5G時代,手機廠商開始廣泛應用均熱板技術,進一步提升智能手機的散熱效率。
雖然熱管和均熱板的導熱系數更高,但是原理是加快熱量從手機發熱部件轉移到環境中的速度,最終散熱效果還是要看散熱材料與空氣之間的熱對流。因此,散熱材料的熱特性對手機散熱效果有著不可忽視的影響。目前,“散熱片(石墨烯膜/石墨片)+熱管/均熱板”的整體解決方案逐漸被市場所認可。
均熱板與熱管的區別,還在于器件結構的差異。傳統的兩層均熱板制作流程為在銅基的基礎上燒結支柱和燈芯結構,然后進行銅焊、灌水并密封,最后釬焊周邊,形成穩固的均熱板。隨著工藝技術的發展,和不同應用場景對器件大小、性能的要求,均熱板制作工藝和結構不斷優化升級,相關產品快速迭代。

近年來,VC均熱板技術演進方向主要集中于以下幾個方面:一是均熱板選材多樣化,受益于中框-VC一體化散熱解決方案,不銹鋼VC嶄露頭角;二是封裝工藝正在變革,激光封裝有望替代鍍銅釬焊封裝制程;三是超薄VC銅網燒結毛細制程有望被打破,毛細制程多樣化,印刷毛細與半導體光罩蝕刻毛細嶄露頭角;四是厚度進一步下探,VC均熱板有望薄至0.3mm以下。
此外,自動化正在成為VC均熱板制程發展的必然趨勢,注水除氣、插鼠尾、置銅網等關鍵工序將實現高度自動化。未來幾年,VC均熱板生產將逐步集中于手機精密機構件供應鏈頭部廠家,促進自動化的普及。相比之下,自動化程度高的均熱板生產企業將獲得競爭優勢,市場競爭將進一步加劇。

根據Yole Development預測,2019-2025年間5G手機銷量將以72%的復合增長率擴張;到2025年,5G手機市場份額將占總市場份額的30%左右;屆時,支持毫米波頻段的5G手機將占全部5G手機的13%。盡管受疫情影響,2020年第一季度全球智能手機出貨量2.758億臺,同比下降11.7%。但高通對全年5G手機出貨量較為樂觀,維持2020年5G手機出貨預測在1.75億至2.25億部不變。

隨著5G通信技術不斷走向成熟,5G手機終端開始放量,VC均熱板將迎來爆發性增長。假設VC均熱板在5G手機中的滲透率達到30%,單片VC均熱板價值15元人民幣,則2025年全球手機VC均熱板市場將達到90億元人民幣以上。受此驅動,VC均熱板技術迭代加速,新材料、新結構、新工藝將不斷涌現,自動化程度繼續提升,國際競爭日趨激烈。
比熱管還高級?VC均熱板真的好用嗎?
01 新興的VC均溫板
02 VC均熱板的散熱原理

VC均熱板的內部結構

熱管的散熱原理

VC均熱板的工作原理
03 VC與熱管的混合應用

