3.21 流體流動(dòng)及流體動(dòng)力學(xué)
Adam Powell
2003 年4 月23-30 日
摘 要
材料科學(xué)與工程主要研究材料的結(jié)構(gòu)性能以及加工工藝之間的關(guān)系。加工工藝對(duì)結(jié)構(gòu)的影響主要是通過(guò)反應(yīng)動(dòng)力學(xué),相變化以及傳質(zhì)傳熱來(lái)實(shí)現(xiàn)的。通常一個(gè)過(guò)程的關(guān)鍵控制步驟是對(duì)某單元提供足夠的能量或試劑,而試劑或能量常常又是通過(guò)流體傳遞的,因此流體流動(dòng)對(duì)能量以及質(zhì)量的傳遞速率有很大的影響。由于在流體流動(dòng)時(shí)既有擴(kuò)散又有對(duì)流,而且對(duì)流流動(dòng)時(shí)流體速度對(duì)濃度和溫度分布有影響,因此流體流動(dòng)中的傳質(zhì)和傳熱要比在固體中的復(fù)雜。另外,非線性的對(duì)流傳遞將導(dǎo)致湍流的發(fā)生。湍流的本質(zhì)是對(duì)流,可以強(qiáng)化質(zhì)量、熱量及動(dòng)量的擴(kuò)散。
在接下來(lái)的四講中將會(huì)介紹流體動(dòng)力學(xué)的一些概念:動(dòng)量傳遞,對(duì)流流動(dòng),流體性質(zhì)的封閉方程(奈維-斯托克斯方程),耦合流動(dòng),溶質(zhì)/熱量在流體中的擴(kuò)散以及湍流流動(dòng)及輸送。最后將介紹一定流動(dòng)狀態(tài)下流體與簡(jiǎn)單集合形狀固體之間的傳質(zhì)、傳熱系數(shù)的計(jì)算方法,并將其擴(kuò)展到較復(fù)雜的情況。通過(guò)本部分的學(xué)習(xí),將會(huì)使讀者對(duì)于流體輸送中的流體動(dòng)力學(xué)具有較深的了解,并得到系統(tǒng)的動(dòng)力學(xué)知識(shí)。
目錄:
1. 動(dòng)量擴(kuò)散、剪應(yīng)力、壓力和斯托克斯流動(dòng)-3
1.1 溶質(zhì)擴(kuò)散及熱量擴(kuò)散簡(jiǎn)介--3
1.2 速度矢量場(chǎng)及動(dòng)量擴(kuò)散張量-3
1.3 動(dòng)量擴(kuò)散與機(jī)械應(yīng)力的關(guān)系-4
1.4 斯托克斯流動(dòng)-5
1.4.1τ的分解方程-5
1.4.2 密度 ρ的表達(dá)式-6
1.4.3 質(zhì)量守恒與連續(xù)性方程6
1.4.4 簡(jiǎn)化的封閉斯托克斯流動(dòng)方程6
1.5 溶質(zhì)擴(kuò)散、熱量擴(kuò)散及動(dòng)量擴(kuò)散小結(jié)--7
1.6 例題-7
1.6.1 庫(kù)愛(ài)特流動(dòng) 7
1.6.2 由于重力作用沿傾斜面的流動(dòng)- -8
1.6.3 繞過(guò)球體的流動(dòng)-9
1.7 練習(xí)--9
2. 隨體導(dǎo)數(shù)及奈維-斯托克斯方程--9
2.1 隨體導(dǎo)數(shù)-10
2.1.1 例題:熱傳導(dǎo)、對(duì)流、熔化-11
熱設(shè)計(jì) http://www.aji87.cn
2.2 流體流動(dòng)方程中的對(duì)流項(xiàng)--12
2.2.1 連續(xù)性方程--12
2.2.2 動(dòng)量對(duì)流--12
2.2.3 奈維—斯托克斯方程-13
2.2.4 例題:圓管內(nèi)流動(dòng)-14
2.3 雷諾數(shù)-14
2.3.1 例題:繞球體的流動(dòng)-14
2.4 湍流的形成--14
2.5 練習(xí)-14
3 層流邊界層與曳力系數(shù)-15
3.1 簡(jiǎn)例:運(yùn)動(dòng)固體的“熱邊界層”-16
3.2 經(jīng)典流動(dòng)范例:平板上流動(dòng)- 16
3.2.1 平壁上流動(dòng)的動(dòng)量邊界層- 17
3.2.2 邊界層與入口長(zhǎng)度- 18
3.2.3 平壁上層流流動(dòng)時(shí)曳力18
3.3 摩擦因數(shù)--19
3.3.1 平板上摩擦因數(shù) 19
3.3.2 管內(nèi)流動(dòng)- 20
3.3.3 繞球體流動(dòng) 21
3.3.4 繞柱體流動(dòng) 21
3.4 練習(xí)--21
4 傳熱和傳質(zhì)系數(shù)的計(jì)算--22
4.1 對(duì)流傳熱和傳質(zhì)系數(shù)-23
4.1.1 相對(duì)擴(kuò)散系數(shù):普朗特?cái)?shù)23
4.1.2 無(wú)量綱傳遞系數(shù):努塞爾數(shù) 23
4.2 平壁強(qiáng)制對(duì)流--24
4.2.1 普朗特?cái)?shù)小的情況-24
4.2.2 普朗特?cái)?shù)大的情況25
4.2.3 湍流的影響--25
4.3 自然對(duì)流-25
4.4 小結(jié):求解步驟-26
4.5 練習(xí)-26
無(wú)量綱數(shù)群組小結(jié)--26
1. 動(dòng)量擴(kuò)散、剪應(yīng)力、壓力和斯托克斯流動(dòng)
因?yàn)橛杉羟辛σ鸬膭?dòng)量傳遞速率與動(dòng)量梯度成正比,所以粘性剪切是一個(gè)擴(kuò)散過(guò)程,這和溶質(zhì)及熱量擴(kuò)散非常相似。本章首先簡(jiǎn)單回顧溶質(zhì)擴(kuò)散和熱量擴(kuò)散,介紹動(dòng)量擴(kuò)散的概念,剪應(yīng)力張量的表達(dá)及壓力的作用,并得到封閉系統(tǒng)的斯托克斯流動(dòng)方程:斯托克斯流動(dòng)方程是一個(gè)偏隨體導(dǎo)數(shù),其中的標(biāo)量和矢量分別描述低速流體流動(dòng)系統(tǒng)的壓力與速度。
1.1 溶質(zhì)擴(kuò)散和熱量擴(kuò)散簡(jiǎn)介
1.2 速度矢量場(chǎng)與動(dòng)量擴(kuò)散張量
流體流動(dòng)與上述溶質(zhì)擴(kuò)散和熱量擴(kuò)散不同,因?yàn)閳?chǎng)變量是矢量場(chǎng)u (x, y, z), 即流體速度。
但是我們可以像質(zhì)量及熱量傳遞那樣對(duì)每一擴(kuò)散組分寫(xiě)出守恒方程及推導(dǎo)方程。描述每一組分在各個(gè)方向動(dòng)量傳遞的動(dòng)量通量是一個(gè)二階張量τ ,例如yx τ 是x 方向的動(dòng)量在y 方向的傳遞。
1.3 動(dòng)量擴(kuò)散與機(jī)械應(yīng)力的關(guān)系
1.4 斯托克斯流動(dòng)
壓力對(duì)動(dòng)量產(chǎn)生影響是因?yàn)閴毫μ峁┝艘粋€(gè)沿著壓力梯度方向的推動(dòng)力
1.5 溶質(zhì)擴(kuò)散、熱量擴(kuò)散和動(dòng)量擴(kuò)散小結(jié)
表一對(duì)溶質(zhì)擴(kuò)散,熱擴(kuò)散及動(dòng)量擴(kuò)散作了小結(jié)(括號(hào)中的數(shù)字是上面公式的編號(hào))。
2 隨體導(dǎo)數(shù)及奈維-斯托克斯方程
對(duì)流傳遞包括由于物體相對(duì)于參照系的運(yùn)動(dòng)而引起的溶質(zhì)、熱量、質(zhì)量及動(dòng)量傳遞。在流體系統(tǒng)中,對(duì)流傳遞相對(duì)于只有擴(kuò)散來(lái)說(shuō)增強(qiáng)了傳遞速率。人們一般不用對(duì)流來(lái)描述固體的傳遞。但是在很多情況下,定義一個(gè)相對(duì)于固體的動(dòng)態(tài)參照系卻很方便,而且在此參照系中,分析方法同前。
這節(jié)首先將會(huì)介紹固體中的對(duì)流傳遞與隨體導(dǎo)數(shù),然后討論在流體中的應(yīng)用。這將會(huì)引出質(zhì)量和動(dòng)量守恒方程中的對(duì)流項(xiàng)以及流體性質(zhì)的N-S 方程。雷諾數(shù)描述了流動(dòng)方程中對(duì)流項(xiàng)及擴(kuò)散項(xiàng)的相對(duì)重要性。如果雷諾數(shù)很小,我們就可以忽略對(duì)流項(xiàng)而使用1.4 節(jié)的斯托克斯方程。
若雷諾數(shù)很大則非線性對(duì)流項(xiàng)就會(huì)使流體不穩(wěn)定而引起湍流。以上這些內(nèi)容都將在本節(jié)中討論到。
2.1 隨體導(dǎo)數(shù)
在一個(gè)相對(duì)于我們的參照系靜止的物質(zhì)中,擴(kuò)散方程與式1 到式4 相似。等號(hào)左側(cè)對(duì)時(shí)間的偏微分導(dǎo)數(shù)描述了空間固定一點(diǎn)的濃度隨時(shí)間的變化。現(xiàn)在討論二維的情況(三維時(shí)很復(fù)雜),
熱設(shè)計(jì)資料下載: 流體流動(dòng)及傳熱傳質(zhì)量講義.pdf
標(biāo)簽: 點(diǎn)擊: 評(píng)論: